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Abstract  

The Cabibbo-Ferrari derivation of the Dirac charge quantization condition in electro- 
magnetism is extended to the gravitational field. This is accomplished by use of the path- 
dependent formalism pioneered by Mandelstam. As a result, we find that the Bianchi 
identity generalizes to include a quantized, singular source term for the dual Riemann 
tensor. Under reasonable assumptions, this source term is proportional to the divergence 
of the energy-momentum tensor, leading to a quantized violation of local energy conservation. 
Specifically, it is found that the magnitude of the time rate of appearance of three- 
momentum in any volume of three-space must be an integer multiple of 3c4/2G. Some 
physical aspects of this energy nonconservation are briefly considered. 

1. Introduction 

In 1931 Dirac demonstrated that the existence of  magnetic monopoles is 
consistent with quantum mechanics only if a quantization condition is im- 
posed on the sources of  the electromagnetic field; that is, electric and magnetic 
charge must be quantized. Since Dirac's pioneering work, this theme has been 
taken up by several authors, with notable contributions in particular from 
Schwinger (1966, 1968) and Cabibbo & Ferrari (1962). Using a variety of 
techniques, all o f  these authors arrive at essentially the same conclusions as 
Dirac. 

On the other hand, examples of  the application of  analogous arguments 
to the gravitational field have been scant, presumably owing to the non-Abelian 
nature of  the gauge group of  general relativity which makes the procedure 
more complex than with the commutative gauge group of  electromagnetism. 
In a treatment of  the relationship between quantum theory and general 
relativity, Utiyama (1965) proposed the existence of  a quantized gravitational 
analog of  magnetic charge, but without exploring the ramifications of  the 
suggestion. Dowker & Roche (I  967) considered more thoroughly the same 
possibility, using linearized gravitational theory. Mural (t 972) and Klimo & 
Dowker (1973) discussed magnetic monopoles within the context o f  general 
Yang-Mills fields. Recently Motz (1972) adapted Schwinger's fine of  reasoning 
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to gravity and found as a consequence a quantum condition on mass in terms 
of the Planck mass (he/G) 1/2. 

The derivation by Cabibbo & Ferrari of Dirac's quantum condition employs 
Mandelstam's path dependent formalism (1962a); these authors obtain the 
Dirac condition as a consistency requirement on the structure of path-dependent 
electromagnetic field theory. Their approach is essentially a relativistically 
covariant generalization of Dirac's original analysis, and as such it is particularly 
well suited to a similar application to general relativity. Therefore, in response 
to Motz, we attempted to show that the Cabibbo-Ferrari technique in gravita- 
tion does not lead to Motz's quantum condition, nor to any quantization at all 
(Riegert, 1974). 

We now believe a deeper examination reveals that a quantum condition does 
occur for the sources of the gravitational field, but not the one Motz envisions; 
the basic argument in outline is simply presented. 

The starting point of Cabibbo & Ferrari is a consideration of the gauge 
invariant derivative of a charged field X: 

D . x  = x , .  - (ieA.x/h) ( 1 . 1 )  

where Au is the electromagnetic potential. Similarly, we may consider the 
covariant derivative of a spinor or tensor field ~, 

~; ,  = ¢,u + P.~O (1.2) 

where I'u is the appropriate affinity. Note that whereas (1.1) contains Planck's 
constant in an essential way, (1.2) does not, since for ~ a tensor field, (1.2) is 
valid even in classical general relativistic field theory. Since the quantum 
conditions for the electromagnetic and gravitational fields are derived directly 
from (1.1) and (1.2), respectively, it follows that the quantization condition 
on the source of  the gravitational field does not involve h. Consequently, 
Motz's result cannot be realized. 

It is easy to see, however, what alternative form the gravitational quantum 
condition must take by examining the electromagnetic case. The vanishing of 
the three-volume integral of the divergence of the dual Maxwell tensor in 
ordinary electrodynamics is replaced in monopole theory by 

f F*UV,u dVta = QM 
v 

where QM is the quantized magnetic charge. By comparison, in general relati- 
vity we expect the three-volume integral of the divergence of the dual Riemann 
tensor, which normally vanishes by virtue of the Bianchi identity, to generalize 
to 

f R*~uv;u dV,  = Q~ 
v 

where some scalar formed from Qat~ is quantized. 
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Since the prime consequence of the Bianchi identity is the conservation of 
energy-momentum, in our generalized theory we might expect some sort of 
quant ized  violation o f  local e n e r g y - m o m e n t u m  conservation. Indeed, we have 
already remarked that Planck's constant cannot appear in our result, which 
leaves only the speed of light c and the gravitational constant G with which 
to express the quantization condition. We note that cS/G has units of erg 
sec -1, as would be expected if the quantization involves the rate of production 
or destruction of energy. 

It is perhapa necessary to emphasize that the nonoccurrence of h in our final 
result should not be taken as an indication that the quantum condition is a 
consequence of strictly classical considerations. Indeed, only within the frame- 
work of wave mechanics is the formalism of interacting fields sufficiently 
broad to embrace all physical phenomena, and only using field theory will we 
arrive at our desired goal. 

In the following sections we attempt to make precise the foregoing con- 
jectures. 

2. Coordinate S y s t e m s  

Select an arbitrary point O in space-time. By the equivalence principle, we 
may erect a global coordinate system xU (whose origin for convenience may be 
chosen to coincide with O) such that xU is locally inertial at O. In the language 
of the tetrad formalism (see, e.g., Kibble, 1961 ; and deWitt, 1965) this means 
that if hil~(x) is a field of orthonormal tetrads defined by 

hilahiv = glzu 

where 

(2.1a) 

hitahi 'u = r~i/ (2.1b) 

r~ii - diag(+l, - 1 ,  -1 ,  - 1 )  (2.2) 

then at the point 0 we have 

hits(O) = 6i# (2.3a) 

hiu,o(O) = 0 (2.3b) 

Note that here we are adopting the convention of employing the lower case 
Latin alphabet for locally inertial (Lorentz) coordinate frame indices and the 
lower case Greek alphabet for general curvilinear (global) coordinate system 
indices; both types of index run from 0 to 3. 

Equation (2.3b) taken with (2.1a) implies that 

gu~,o(0)  = 0 

which in turn forces the vanishing at O of the global affine connection [we 
are ignoring here the intriguing possibility of torsion (Kibble, 1961)] : 

r~'u~(O) = 0 (2.4) 
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The vanishing of the Christoffel symbol at O is of course necessary in any 
coordinate system which is inertial there. 

The general covariant derivative of the tetrad is defined to vanish identically 
throughout space-time; that is, 

0 = hiu,~ ==- h i (2.5) ~,o + AijohJl ~ -- FX'uohi• 

Here, Ai#r is the local affinity. As a consequence of (2.3b), (2.4), and (2.5), 
the local affinity also vanishes at O: 

Aii~(O) = 0 (2.6) 

The utility of equations (2.3), (2.4), and (2.6) lies in their use as boundary 
conditions on the solutions of certain differential equations to be considered 
in the sections to follow. 

3. Spinor  Analys is  

One can obtain an understanding of the gravitational field not provided 
by the usual geometric approach of general relativity by considering gravita- 
tion, in analogy to electromagnetism, as a gauge field. In other words, we may 
consider gravity as the compensating field arising from the rather natural 
demand that the Lorentz covariant equations of special relativity should remain 
form invariant under the more general class of position-dependent Lorentz 
transformations, Proceeding in this fashion, we find that the tetrad formalism 
manifests itself in a direct manner (Kibble, 1961). 

Moreover, one discovers in this way that the gauge group of gravidynamics 
is SL(2, C), the six-parameter covering group of the homogeneous Lorentz 
group. (For further discussion of gravitation as a gauge field, including a 
possible generalization, the reader is referred to Salam, 1973.) Since SL(2, C) 
contains SU(2) as a subgroup, it is easy to see that spinors must enter essentially 
into any analysis of the gauge field aspects of gravitation. Indeed, since the 
appearance in nature of half-integral spin fields forces upon us consideration 
of the spinor representations of the Lorentz group, and because the entire 
Lorentz tensor formalism can easily be recast into spinor language, it is both 
necessary and convenient to discuss all representations of the homogeneous 
Lorentz group in terms of the spinor representations. 

To this end, let ~ be a field that provides a matrix representation of the 
Lorentz group. Then the covariant derivative of ¢ is defined by (DeWitt, 
1965) 

~tu - ¢ ,u  + ½GilAijut~ (3.1) 

where G ij = - G  ji are the generators of the representation and obey the com- 
mutation relations 

[GiJ, G kl] = ½Cil'MmnG mn (3.2) 

The Cijklmn are the structure constants of the group. We employ a vertical 
stroke for local covariant differentiation and a semicolon for general covariant 
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differentiation. For purely local quantities, there is no difference between the 
two types of derivative• 

It is convenient for future use to define in addition a global covariant 
derivative, indicated by a colon: 

Bi #:v = Biu ,v - r'X #vBix (3.3) 

The general and global covariant derivatives of a strictly global tensor are 
identical. 

The basic entity in spinor analysis is the fundamental spinor-tensor o z4~. 
It satisfies 

oiA ~ oJ BC + oJA B (7i [3c = ~i] 6 A (3.4) 

and is used to convert Lorentz tensor indices to spinor indices and vice versa• 
Here, and in what follows, we use upper case Latin letters for spinor indices, 
running from 1 to 2; in essential respects our spinor conventions follow those 
of Bade & Jehle (1953). The fundamental spinor-tensor is also by definition 
invariant under proper homogeneous Lorentz transformations; thus 

0 iA ~ = o'iAB ~ Ai]S A C d C b S - l b B  (3.5) 

where, for Lorentz transformations characterized by the six infinitesimal 
parameters d~'q = - d ~  ]i, 

Aij = 6} + df~ (3.6a) 

SAC -- 8A + ½ Gila C dfq  (3.6b) 

S - l b  h = 6 D - ½GiJb i~ dfij (3.6c) 

Insertion of (3.6) into (3.5) yields to first order in df  i] [after a straightforward 
but laborious manipulation which makes frequent use of (3.4)] the result 

GijA C = ½(oiAF d p c  -- ogAF oi~c) (3.7a) 

ai]b ~ = ½(oiDE o] E~ -- o fbE oiel~ ) (3.7b) 

Observe that Gtj = G q, where th___e bar denotes complex conjugation. This is 
entirely expected since sA _ SA. 

We may express the o matrices in terms of the familiar Pauli spin matrices 
x, which by definition satisfy 

r&rA = iezxA2r~ + 6+,A (3.8) 

Specifically, 

. o) 10)  39, 
Notice that we employ upper case Greek letters for three-vector indices, 
which take on the values 1, 2, 3. In (3.8), ezXA~ is the three-dimensional Levi- 
Civita symbol, e12 3 = +1. 
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Defining a spin four-vector s i by 

s i - (1 ,~) (3.10) 

we find (see Bade & Jehle, 1953) 

oiAB = (2)-1/2S i 

OidD = (2)-1/2(--1)@ = ( 2 ) - 1 / 2 ( t ,  - -  ,,¢) 

(3.1 la) 

(3.1 lb) 

Substituting (3.11) into (3.7) and applying (3.8) we have 

a aO = ½rA, G AA = --½ieAAZ r~ (3.12a) 

d A° = ½ ~ ,  0 AA = ½ i e , , A ~  (3.t2b) 

Equations (3.12) could have been arrived at via a perhaps more familiar 
route which starts by reexpressing the commutation relations (3.2) in terms of 
a pair of independent angular momentum matrix vectors J~ and Ka .  In this 
way, we would discover that equations (3.12a) constitute the generators of 
the (½, 0) representation, whereas (3.12b) generate the (0, ½) representation 
(see, e.g., Schweber, 1961). The spinor formalism is better suited to our 
purpose, however. An arbitrary tensor or spinor transforms like some outer 
product of the (½, O) and (0, ½) representations. This fact is accommodated 
in spinor algebra by the simple prescription of adding the appropriate numbers 
of undotted and dotted indices to the field variable. Therefore, without loss of 
generality, we may restrict our attention to the single index (spin-½) spinor 
representations. 

As it bears on the main argument of this article, a still more cogent reason 
for taking as primary the half-integer spin representations is that consideration 
of a spin-½ field interacting with gravitation leads to the most restrictive 
quantization condition possible on the sources of the gravitational field, as 
may be seen by comparison to the model case of electrodynamics. That is, 
the treatment of a particle of charge e interacting with the electromagnetic 
field leads to a quantum condition on magnetic charge more restrictive than 
an identical treatment of a particle of charge ae, c~ > 1, as is readily observed 
by substituting ae for e in the Dirac condition. A comparison of (1.1) and (3.1) 
demonstrates that, roughly speaking, analogous to the charge of a test particle 
in an electromagnetic field is the spin of a particle in a gravitational field. Hence, 
since ½ is the smallest (nontrivial) spin a test particle may possess, analysis of 
a spin-½ field yields the most limiting quantization condition for gravity. 

At this point, it would be wise to emphasize that, with respect to quantum 
field theory, all of the fields discussed herein should be considered as strictly 
classical entities. Thus, while the existence of spinor fields will be exploited, 
such fields are essentially quantum mechanical only within the context of first 
quantization, which makes it, if not plausible, at least possible to ignore 
completely the effects of second quantization. 
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Rewriting (3.1) for the (½, 0) representation, we obtain 

~A lU = ~A 1GijA ,u + - cAqu ~ c  

= I~/a ,# + (GAOAcAAo u + ½G TM cAAAu)~ C 

or, suppressing spinor indices using matrix multiplication and inserting (3.12a), 

~tu = ~b,~z + ½(zaAaou -- ½ieaa~rxAaAv)~  

= 0,ta + ½x'Au~ (3.13) 

where 

Au - A z  v --Az0g - ½iehxAZA~Au (3.14) 

A similar treatment of the (0, ½) representation yields, in matrix notation (and 
with the obvious requirement that Aqu be real), 

- - o  

= + A . $  (3 .15)  

Since (3.15) comes from (3.13) by the substitution x. Au -~ x" Au, all results 
applicable to the (1, 0) (undotted) representation also apply after complex con- 
jugation to the (0, ½) (dotted) representation. 

It may be demonstrated (DeWitt, 1965) that 

lu Iv - ¢ Ivl. = ½GiiRquv ~ (3.16) 

where 

Rquv - Aqu,v - Aiiv,~ + AikvA k ju - AiauA k jv (3.17) 

[when performing the second local differentiations on the left of (3.16), we 
simply neglect the presence of the global tensor indices.] Expressing the Gq 
by (3.12a) and the Aqu by (3.14), (3.16) and (3.17) become 

 j.jv - Ctvl.  = R . v ¢  (3 .18)  

Ruv = Au,v - Av,u +/(Av x A~) (3.19) 

4. The Path Dependence Formalism 

We introduce a matrix W(x, P) by requiring that 

3u W(x , P) = ½ W(x, P) x" Au(x) (4.1) 

In view of (3.13), this implies 

3 u [W(x, P)$(x)] : W(x, P)[$(x)lu] (4.2) 

The P in W(x, P) denotes path dependence, as may be seen by integrating (4.1): 
X 

P 
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The integration is taken from O, the origin of the global coordinate system, 
along the path P to the point xU. We may fix the constant k by the requirement 

• (0, P) - w(0, P)~(0)  = ~(o) 

This is reasonable, since the path dependence of a quantity reflects its inter- 
action with the gravitational field; in the absence of gravitation there should 
exist no difference between the path-dependent field q2 and the ordinary field 
~. Since (2.3a), (2.4), and (2.6) tell us that in the vicinity of O all effects of 
gravitation have been eliminated, the result W(0, P) = 1 follows. Thus, 

x 

W(x,P) = 1 + f We" Au d~ ta (4.3) 
P 

Using (4.1) and the identity 

we have in addition 

0 = O/2(W~ 1"*1 ) ---- (0/3, [~J)W -1 + W 0 H, W - t  

~U W-l( x, P) - -½"r" A~(x) W -1 (x, P) (4.4a) 

X 

if W-I(x,P) = 1 - 2  "¢" AuW-ld~U (4.4b) 

P 

In order to raise and lower spinor indices, we may introduce into spinor space 
a metric 3' defined by (Bade and Jehle, 1953) 

10) 
Then, C A 3"BA W-IBc = ~B W -1Be has properties exactly analogous to W A B ~B: 

OI, z(~B [¥--IBc) = ~B jla w-1Bc  

In general, with the four basic types of spinors (contravafiant and covariant, 
dotted and undotted) C A , ~A, ~B,.qJh, we associate the four path-dependent 
matrices WCD, W-leD,  WP~F, W- lEg ,  respectively. Because of the formal 
similarities between all four entities, we shall for the most part deal only with 
undotted, contravariant spinors. The equations obtained may be used for the 
other spinors by application of the metric 3' and/or complex conjugation. 

Under a space-time-dependent Lorentz transformation S(x) which satisfies 
the boundary condition S(0) = 1, we have 

¢'  -~ Sff (4.5a) 

-2x'l Au, = ½S't" AuS -1 - (0uS)S "-1 (4.5b) 
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where the second equation is obtained by assuming the covariant derivative of 
transforms as a spinor; the second term on the right of (4.5b) arises because 

Ai] u transforms affinely under the Lorentz group. Now, by (4.1), 

' = (4.6a) ~uW (x,P) ' ' ' -~ W ,¢ . Au 

Similarly, 

~u [ w(x, P)s- ' (x) ]  = (~uW)S-' + W~S- '  

= ½ W't" AuS -1 + W 0#S -1 

= WS -1 (½S.. AvS -1 + S 0 rS- ' )  

= WS-' [½S.. AuS -1 - (~vS)S-' ] 
! 

= ½WS-% "Au (4.6b) 

where in the final step use has been made of (4.5b). Comparing (4.6a) and 
(4.6b), and recalling W(0, P) = W'(0, P) = 1, we find W' = WS -I, or 

W = W'S (4.7) 

Making the natural definition 

~(x,  P) - W(x, P)~(x) (4.8) 

we observe that, by virtue of (4.5a) and (4.7), 

,I/(x, P ) -  w'¢'= w's~ = w~; = ,I,(x, P) 

Therefore, q~ is path dependent but independent of Lorentz transformations 
which may vary from point to point in space-time. 

Define M(x, y, AP) by 

W(y, P + AP) = M(x, y,  2Og) W(x, P) (4.9) 

where &P is the path segment connecting points x and y. Obviously, (4.9) is 
equivalent to the equations (suppressing the explicit path dependence) 

M(x, y) = W(y) W -1 (x) (4.10a) 

W -I (x) = W -I (y)Jl/l(x, y) (4.10b) 

Differentiating M(x, y) with respect to each of its two arguments, 

OM(x, y)/OyU = O [W(y)W -1 (x)]/OyU 

= [OW(y)/OyU] W-l(x) 

= ½ W(y),r" AuCy ) W-1 (x) 

= ½W(y)x " A u ( y ) W - l ( y ~ ( x , y )  (4.1 la) 
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and 

aM(x, y)/ax. = a [W(y) W-'(x)] /ax.  

= W(y) a W-' (x)/ax. 

= -½ W(y)',. A.(~)W-* (x) 

= -½M(x, y) W(x)'r A.(x) W -1 (x) (4.11b) 

In obtaining (4.11), we use (4.1), (4.4a), (4.9), and (4.10). 
We now demonstrate that (4.1 la) and (4.1 lb), together with the necessary 

condition that M(x, x) = 1 when AP = O, are satisfied by 
Y 

= 1 +1  M(x,y) 2 , ,  M(~'Y)W(~)"c'Au(~)W-I(~)d~U (4.12) 
x 

where the integral is evaluated along 2a °. To prove this, observe that according 
to (4.12) 

aM(x, y)/axU = -½M(x, y) W(x)'¢" Au(x) W-I(x) 

which is identical to (4.1 lb). Also, by (4.12) 

aM(x, y)/ayU = ½MO, , y) W(y)x" A~.O')W-l(y) 

Y 

if + ? [aM(~,y)/ayU] W(~)-r-A~(~)W-l(~)d~ ~ 
x 

Inserting the value 1 for M(y, y) and substituting the desired expression (4.11 a) 
for aM(~, y)/ay", we obtain 

aM(x, y)/ayU = ½ W(y)x. Au(y)W -1 (y) 

Y 

I f  + -  [½W(Y)x. Au(y)W-l(y)M(~,y)] W(~)x'Aa(~)W-l(~) d~ ~ 
2 

x 

= ½W(y)'r'Au(y)W-l(y) 1 + ~,y)W(~)'r'Aa(~)W-l(~) d~ a 
x 

= ½ W(y)¢- hu(y)  W -1 (y)M(x, y) 

which is (4.1 la). The validity of (4.12) is thus established. Reference to (4.9) 
shows that (4.12) may be rewritten as 

Y 

M(x,y, AP)= 1 +½W(y) f'r'Au(~)W-l(~)d~ a (4.13) 
x 
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tn (4.13), if x = y,  but the point is approached by two different paths so that 
zhP is a nonzero, closed curve, then 

M(x, AP) = 1 + ½W(x) ~,~- Au(~)W-t(~) d~U 

f ,¢. [~(AuW-1)/a~v _ a(AvW-1)/~u] dSUV(~), (4.14) 1 ¼W(x) + 
]g 

by Stokes' theorem, where E is a surface bounded by ~r,. With regard to our 
integral theorem conventions, we adhere basically to the treatment of Landau 
& Lifshitz (1971). 

We have 

3v(Av W -1) = (~vAu) W -t + Au by W -1 

= (Au, v - 1A#'~" Av) W -1 

Therefore, 

Ov(Au W -1) - Ou(Av W -1) = (Au ,v  -- Av,u 

- ½Aux" Av + '½Av¢" Au)W -1 

Since by (3.8), (3.19), and the above 

"c. [3v(AuW -1) - Ou(A.W-1)]  = .~-(Au, v - Av,u)W -1 

+ 1 [-Au" Av - i(&, x Av)" '~ + Av" Au + i(Av x Au)"~] W-I 

= ~" [Au,v - Av,u + i(Av x Au)] W -1 

= x" RuvW -1 

(4.14) becomes 

= 1 + ¼W(x) f .¢ "Ruv (~ )W- l (~ )dS#V(~)  M(~) 
Z 

= 1 +¼ fM(Lx)W(~)'~'Ru,,(~)W-a(~)dSU~'(~) (4.15) 

Note that while it would appear that the right-hand side of (4.15) includes 
x dependence, this conclusion would be erroneous since according to (4.10a) 

auM(x , ~_,) = [a u W(x, P')] W-l(x,  P) + W(x, P') [a u W -1 (x, P)] 

= ['12 W(X, e')'lr" A#(x)]  W -1 (x,  P)  + W(x, e t )  [12  ~¢" A/~(x)W_l(x, p)]  

= 0  

Consider the derivative of W'rW -1 : 

Oo~( W'~W -1 ) = (aOt W)q~ W -1 + W"¢ ac~ W -1 

= ½ Wx. A~'c W-1 _ ½ W'rx" A~ W-1 
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Thus, by (3.8) 

aa (W'I¢ W-1. Ru v) = ½ W'~. As'cW-I" Ruv - ½ W,¢- R~v-¢. Aa W-1 

+ W'cW -1" 0~Ru~ 

= ½W[A~- R.v + i(Aa x Ruv)" "~- Ruv" Aa - i (Ruv x As) "~] W -1 

+ W'cW -1" O~R.v  

= W.cW -1 • [Ruv,~ +/(As x Ruv)] (4.16) 

It can easily be shown by expansion in terms of the definitions (3.14) and 
(3.19) that the local covariant derivative of the curvature tensor 

R ijpv kx ~- Ri/tsv,~ - A kic~R k/#v -- A kiaRik pv 

may be equivalently expressed as 

Ruvta = R.v,a +/(As x Ruv) 

With this result (4.16) becomes 

3c~(W, vW -I • Ruv ) = W'cW "-1 • (Ruvta) (4.17) 

Let us introduce the quantity VAZ by 

Oc~( V A ~ R  xuv) = V A ~ ( R  xuvI~) (4.18) 

That is, by analogy to (4.8), 

Rp~v - R p A ~ v  :-- V A ~ R  ZIzv 

is the path-dependent, Lorentz-transformation-independent gravitational field 
tensor. Comparing (4.17) and (4.18), it is not difficult to see that 

"CA V A Z R y ,  vv =-- "t" RPuv = W "I'W-1 "Ruv 

Therefore, (4. t 5) becomes 

M(2;) = 1 + ~ M(~, x)'r 'Rp,v(~) dSUV(~) (4.19) 

Combining (4.8) with (4.9), 

W(y, p + z~)~,(x) = M(x, y, z ~ ( x ,  P) 

or, assuming x = y but AP 4 = 0, 

~(x,  P') = M(Z)~F(x, P) (4.20) 

where M(~) is given by (4.19). Equation (4.20) represents the generalization 
to finite closed curves of the well-known result of parallel transport around 
an infinitesimal loop in curved space; we mention in passing that (4.20) results 
in the gravitational analog of the Aharonov-Bohm effect (1959). 

Equation (4.20) also demonstrates the importance of the condition 
0uM(~) = 0; since this relation is essential according to (4.20) if derivatives 
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of a path dependent quantity are to have the same path dependence proper- 
ties as the quantity itself. This is exactly similar to the situation in normal 
gauge invariant theories where the gauge invariant derivative of a gauge- 
dependent quantity is defined so as to transform the same as the quantity 
itself. Moreover, (4.20) and the vanishing of the ordinary derivative of M(2;) 
ensures that if q~(x, P) satisfies some differential field equation then so also 
will 'P(x, P'). 

According to (4.19) and (4.20), if P' differs from P only infinitesimally, 
then 

q~(x,P') = [1 + ¼M(x, x)'¢" Rpuv(x) dSUV] q~(x,e) 

where dSUV is the surface element between P and P'. Since M(x, x) = I, this 
becomes 

@(x, P') - ~d(x, P) = ¼"¢.Rpuv(x ) dSUV,P(x, P) (4.21) 

5. The Consistency Condition 

The surface of integration G appearing in (4.20) is bounded by AP, the 
closed path connecting the point x to itself, but 2; is otherwise arbitrary as 
there is no apparent criterion by which to choose one surface of integration 
over any other. Thus, if 2~ and 2;' are two distinct surfaces both bounded by 
the same closed curve AP, the internal consistency of the path dependency 
approach to field theory requires that M(Y~) = M(G'). In particular, let 2; -> 0. 
Then evidently 2;' -+ 2;c, a closed surface containing three-volume V. As 2; -* 0, 
we must demand that M(2;) -+ 1, so M(2;') -+ 1 also, or 

M(Gc) = 1 (5.1) 

Combining (5.1) with (4.19), 

1 = 1 + -4 Mx" RPtav dS uv 

2c 
or  

f Mx. dSUV = 0 RPu~ (5.2) 
2¢ 

the three-volume V contained inside £e in (5.1) and (5.2) may take on any 
value since the selection of the surfaces G and 2;' was arbitrary. Requirement 
(5.2) is not as restrictive as the stronger condition 

f x" R.e,v 0 dS#V 
Zc 

which would lead, by Gauss' theorem, to the Bianchi identity of normal general 
relativity. 
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p - ~ f R e . ~ a s  "~ (5.3) 

ap/asu~ = ¼RPu~ (5.4) 

Then, by virtue of (3.8), (4.19), (5.3), (5.4), and the well-known identity 

exp(+x-p) = cosh p + [(x-p)/p] sinh p (5.5a) 

P =- tl pit--- (p.p)l/Z (5.5b) 
there holds the relation 

M(E) = {1 + j M [ (cosh p-pSinh P \/1)~ 4RPIzv --O-a@~u)19 

isinh p 
(pxRt ,~v ) l . xdS~ ' }  exp('r.p) (5.6) + 4p 

This may be verified (see the Appendix) by differentiating both sides of the 
equation with respect to S~ ~ and recalling M(Z = O) = 1. 

The identity (5.6) applied to a closed surface of integration leads directly 
to the quantization condition. Thus, letting Y~ = Nc in (5.6) and remembering 
(5.1) 

!e  [ (  sin h P) (1 RP~' - -P aa-~v) exp(-,C, pc)=l + M coshp -  P P 

i sinh p ] + 4p (pxR~,uu)].,rdSuu (5.7) 

where 

Pc - P (~c) =- -4 Re~  cls.~ (5.8) 
Igc 

An application of Gauss' theorem transforms (5.8) into the more useful form 

1 f pc=-4 e~,~TI~,~.~ dVo (5.9) 
v 

where V is again the arbitrary three-volume enclosed by Ne and e°UUris the 
four-dimensional global Levi-Civita tensor, defined in relation to the fiat-space 
Levi-Civita t e n s o r  eijkl,.e 0123 = +1, by 

caput = hiO hjt~ hk V hlr e~jkl 

= heaUur 
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where 

h -- det (ha ~) 

Because of the symmetry of F x ~  in its covariant indices, it is easy to show 
that 

Since e auur has a vanishing covariant derivative, this becomes 
1 o#m- ~e R,  vlr = l(e~UVrRuv);r = R*ar;r 

where the last form is by definition of the right dual curvature tensor. The 
preceding is also valid for the path-dependent Riemann tensor, with the 
proviso that the general covariant derivative be replaced by the global co- 
variant derivative defined by (3.3): 

½eeUVrRl"t~,r : R ~  °r  :r 

Therefore, (5.9) is expressible as 

0c : ? R~o~:~ dVo (5.10) 

V 
If the Bianchi identity 

R~°*:T = 0 

holds throughout V, (5.10) forces 0c to vanish and vice versa (because Vis 
arbitrary). Since the Bianchi identity (and consequently normal Riemann space- 
time) should represent one possible solution of (5.7), pc = 0 must satisfy (5.7), 
which in turn requires that 

[(  sink p ) ( l  t~ ~P ) 
f M c o s h p -  ~Reuv 

Xc Li P P O~'--~u 

i sink p_ (~ x Rp.v)] + • ¢ dSUV = 0 
4p J 

Given this, for nonzero Pc (5.7) becomes 

exp(-~" pc) = 1 

The quantum condition therefore takes the form 

Pc= -4 Rpuv  dSUV = ? " 

2;c V 
n = 0, e l ,  -+2 . . . .  (5.1 lb) 

Equation (5.11) is similar to a quantization condition on the gravitational field 
first proposed by Utiyama (1965) on the basis of somewhat different reasoning. 

Notice that according to (5.1 I), Pc is discontinuous at those regions in space 
where pc changes from quantum number n to n'. Since it is disallowed by 
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(5.1 1) that pc should change continuously as 2~c is deformed or shrunk in a 
continuous manner, these regions of discontinuity must occur only at isolated 
points. Because the ordinary theory of the gravitational field as a consequence 
of the Bianchi identity takes pc = 0 and is in full accord with experience, we 
conclude that pc is everywhere zero except possibly at isolated points in space; 
at these points the condition (5.11) must hoM. In other words, the second inte- 
grand in (5.1 la), R~ar:r, must have the form of a sum of three-space 6 functionals 
normalized in accordance with (5.11). The sources of the dual Riemann tensor 
are quantized and point-like. 

Squaring (5.11 a) provides 

( fvR~ar:r dVo) " ( ! R~:~dV~ )= -16zr2n 2 (5.12) 

Recalling the definition of Rpuv and the form of the antisymmetric four- 
tensor to complex three-vector mapping given by (3.14), it may be shown by 
direct expansion that 

RpAgv =- V/,zRzuv = (-3 Vii m - ¼iektmn Vii m n)Rmuv 

Using this with (4.18), we obtain 

= l 1 v..kl _ ¼ieklmn Viimn)(Rmu,lo) (5.13) Rl~ij~v.o ~--~ v ~1 

Let us investigate the derivative of the quantity OiA f~ W A ceiCb W-lb~: 

Ou(OiA ~ WA co]C[9 W - l b ~ )  = 0/.4 ~ d c b  [(()# W A c)  W- 1/)/~ 

+ WA C(0~u W--I/)B)] 

= OiA/~ O/'CD (½ WAEq;Ec" Au W-lb~ - ½ WAc xO# " ~  W-lPB) 

= OiA ~ ~]A C [~'~CE" A# tiED -- ½ '~ PD" Auu oiCp ] W- 1 b/} (5.14) 

The local covariant derivative of the fundamental spinor-tensor o vanishes 
identically (Bade and Jehle, 1953): 

0 = o]CDI, ~ A J k ,  okCD + ½"CCE'A#o]ED -- ½"[~D" ~ o i C P  (5.15) 

This result is of course a consequence of (3.5), the invariance of o under 
Lorentz transformations; this is a practical convenience, since the conversion 
of tensor indices to spinor indices and conversely thereby commutes with 
covariant differentiation. From (5.15), 

--A]kuokCD = 1.vC E • A#o]E D - ½ "~Fb " AudC~ 

Inserting this into (5.14) yields 

8p.(Oia ~ W A c0]C[9 W-IDB) = --OiA k ~¥A cAikuclkC b W-tD[~ 

= --OiA[3WAcokCbW-tDbA]kU (5.16) 
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Define 

giJ(x,P) =- uL4 ~ W A cdC b W -Ib  [~ (5.17) 

so that (5.16)becomes 

0 u Ui] = --UikA]ku (5.18) 

it is apparent that UiJ(x,P) is the tensor analog of WAB(x, P). We may use 
U-/to consider path-dependent, generalized Lorentz invariant four-vectors of 
the sort J~.  That is, 

J~, .  = ( uiJsj),~ = u/(Jj,u - A ~ . Jk  ) 

= u / ( ~ , . )  

According to (5.17), employing Ui i is a handy shorthand for the procedure of 
converting local tensor indices to spinor indices with e, then changing to path 
dependence, generalized Lorentz invariance by use of the W matrices, and 
finally converting back to tensor indices by reapplying o. 

In particular, 

Reijuu,o - (Ui k ~tR k~v),~ = Ui k U/(R klu~l~) (5.19) 

Comparison of (5.13) with (5.19) reveals 

( 1 V i I M  __ lieklrnngijmn ) = _~t~, ,ltrr.klr.l,~l -- Uilg] k) (5.20) 

Equations (5.20) and (5.17)now serve to define Vii kl, and thus Va~, in terms 
of the fundamental W matrices. 

A tedious insertion of the definitions (3.14) and (3.19) into the quantum 
condition (5.12) produces 

l f R N y : ~ a v ~  f R~'Ja~:~aVa -16zr2n 2 = - 2 

V V 

ieijkl4 f R~k lar : rdV°  f R~'Ta3:3dVa 
V v 

- 12 fR~'j°r:r dVo f R~,i]~:t3 d V ~ - ~ f  *R],ii°r:r dVo fR~iJ~:~dVa 
v v v v (5.21) 

where the second form is by the definition of the double dual Riemann tensor. 
Since the local affinity has previously been taken as real (certainly a realistic 
assumption), (3.17) shows that we must take as real the curvature tensor also, 
forcing the single equation (5.21) to become the two conditions 

f R~i °r :rdVo f R1~iJc~3:3dV~ = 327r2n 2 (5.22a) 
V V 

I*,,* or. f R~iJ~3:3dV,~ 0 • "Po .~ dV~ = ( 5 . 2 2 b )  
V V 
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To summarize, the consistency of  the path-dependent treatment o f  the inter- 
actions of  fields with gravity dictates that the two conditions (5.22) must 
everywhere apply; this is in contrast to the electromagnetic case, where only 
one such restriction on the theory holds. 

For future reference we point out that equations (5.22) are completely 
free of  dependence on or even existence o f  a tetrad hi # defined over space- 
time. This is so because 

Rigi/ar:r dVo = (½e°ZC~gReilc~,r)(ea~,~e dx~ dy ~ dz e) 

Since 

and 
eara# = heara# 

eo~e = (1/h) eov~e 

the dependence on the determinant of  hi # cancels in the above expression. 
Moreover, none of  the other quantities appearing are inherently tetrad 
dependent. Therefore, the quantization conditions (5.22) are valid without 
regard to the existence of  a global metric. 

6. The Path-Dependent Matter Field Equations 

In order that the quantum condition (5.22) not automatically be restricted 
to the trivial n = 0 case, it is necessary that we be able to consistently ignore 
the original definition (3.17) of  Rijuv in terms of  Aiju; in other words, if  (3.17) 
defines the curvature tensor, the Bianchi identity inevitably results. 1 Con- 
sequently, we are forced t,o take the Riemann tensor as the fundamental 
dynamical variable of  the gravitational field, rather than the potentials Aiju. 
This idea is o f  course central to  the question that motivated Mandelstam's 
original development of  the path-dependent approach to gravitation (1962b); 
it suggests that the entity to be quantized in any quantum field theory of  
gravitation is the curvature tensor rather than the metric or affine connection. 
Equations (4.19) and (4.20) represent a good start towards a consistent 
affinity-free treatment of  gravitation, tt remains, however, to verify a path- 
dependent relation equivalent to (3. t 8). 

To this end, following Mandelstam (1962a), let A, B, C, and D stand 
for the four space-time points xU, xU + dxU, xU + dyU, and xU + dxU + dyU, 
respectively. Then, 

qr(x + dx, ,O + AB) - 'I,(x, P) 
eg(x, P),u = dxt~ 

1 Actually, this is not  strictly true if we allow multiply connected space-times; for novel 
topologies such as "wormholes"  it is possible to have the global quanti ty consisting of  
the integral of the Riemann tensor over a closed surface nonvanishing even though the 
Bianchi identity is locally satisfied everywhere. This is conceivable because in such 
space-times a closed surface may not enclose a well-defined interior region, making an 
application of Gauss' theorem impossible. We shall not consider this possibility here; 
for a general discussion, see Lubkin (1963). 
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where AB means the path segment from A to B. Thus, 

g1(x,P),u,v = [g'(x + dx,  P + AB),v - q~(x,P),v]/dxU 

= { [ ~ ( x + d x + d y ,  P + A B D ) - g ' ( x + d x ,  P + A B ) ] d y  v 

[ ~ ( x  +dy,  P + AC) 
dy  v - ~ ( x ' P ) ] } / d x u  

t .  

_ ~ ( x  + dx + dy,  P + ABD) - ~ ( x  + dx,  P + AB) - 'It(x + dy,  P + AC) + gt(x, P) 
dxU d y  v 

(6.1) 

Here, ABD is the path segment from A to D through B. Similarly, we find 

• (x, P),v,u 

• (x + dy  + dx,  P + ACD) - eff(x + dy,  P + AC) - '#(x + dx, P + AB) + q~(x, P) 
dy v dxU 

(6.2) 

Subtracting (6.2) from (6.1), we obtain 

xP(x, P),u,v' - ~ ( x ,  P),v,u = ~ ( x  + dx + dy,  P + ABD) - ~ ( x  + dx + dy, P +ACD) 
dxU dy v 

(6.3) 

Indicating by dS ' ~  the infinitesimal area bounded by the closed path ABDCA, 
we may use (4.21) to reexpress the numerator on the right of (6.3), yielding 

@(x, P),u,v - ~ ( x ,  e),v,u 

_ ix .  Rea~(x + dx + dy) dS~'I~(x + dx + dy,  P + ACD) 
dxla dy  v 

= ½.c" RPuv(X)g~(x, P) (6.4) 

in the limit dx, dy -+ O, since 

Re~e dS a5 = RPa~(dx '~ gyp - dx~ dy a) 

= 2R/ , ,~  d x  '~ dy~ 

Note that we have derived the commutation relation (6.4) for derivatives of 
path-dependent fields directly from the properties of those fields, rather than 
through the formality of converting (3.18) to a path dependent equation by 
use o f  (4.8). 
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In path-dependent electromagnetism, the potentials Atz are often useful 
auxiliary variables, but are nonetheless completely irrelevant to the formula- 
tion of the field equations. In contrast, whereas the local affinity Aq~. may 
likewise be completely dispensed with in path-dependent gravitation, the 
tetrad hi# is essential since only through it are we able to determine the locally 
inertial frames at each point in space-time. How then are we to define the 
tetrad field in terms of the curvature tensor, as compared to the normal 
procedure of defining the curvature tensor as a certain combination of 
derivatives of the tetrad? 

To answer this question, let us define the path-dependent tetrad hpil.t 
in obvious fashion by 

hpi~(x) = U§(x, P)hJ~(x) (6.5) 

Then, by definition of Uij, 

hpit~,u = Uij(hl#w)=- U~(hJ~,u + AJkuhk~) 

According to (2.5), this is equivalent to 

heiu,~, = U§14x W'.~, 

= hpiaPXuv (6.6) 

Note the striking similarity between (6.6) and the relation (5.18) satisfied by 
U~. This similarity points up the intimate connection between the tetrad and 
path-dependent formulations of gravitation: ht.i. may be viewed alternatively 
as the transformation coefficients which convert global tensors to path- 
dependent, generalized Lorentz invariant local quantities, or as the path- 
dependent matrix that changes ordinary global tensors to global quantities 
that are unchanging under the general coordinate transformation group 
GL(4, R). 

Like '#, hpi~ is a path-dependent, Lorentz invariant quantity, so it too 
must obey relations similar to (4.20) and (6.4). In particular, 

hpi~,v,a - hpip.,o,v = hpJ~Rp~vo (6.7) 

or  

hPi~( hpi#,v,a - hpi#,a,v ) = R pi]va (6.8) 

Unlike qz, however, we do not postulate an additional equation of motion 
for the tetrad to satisfy; instead, we take (6.8) as the "field equation" for 
hpi~. Because our point of view is that Rpiiva is the fundamental gravitational 
field variable, (6.8) should be viewed as a definition of h_pi, in terms of Rpqva 
rather than vice-versa. Since (6.8) is a second-order differential equation, we 
require two boundary conditions in order to uniquely specify the tetrad; these 
are provided by (2.3). In addition, since we are neglecting torsion, we must 
demand the symmetry of the global affine connection: 

hpitL,u = hpiv,# (6.9) 
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We are at last in a position to state alt of the general path dependence 
equations, save those for the curvature tensor itself. Therefore, we ignore the 
origins of the theory so far developed and instead concentrate full attention 
on the path-dependent matter fields ~(x,  P). Summarizing, 2 we have 

,IRA.- -A. . . ( x , P ' ) =  M A B ( Z ) "  . " M A ~ ( E )  " " " qe B" '" B •  " " (x,P) 
(6.10a) 

lj 
# I A B ( ~ ) = ~  +-4 MAc(~'X)~CB "RP"v(~)dS~ZV(~) (6 .10b)  

2; 

• 1 f M A d ( ~ , x ) , r d a . R p u v ( ~ ) d S U V ( ~ )  (6.10c) 
a 
2; 

~ A . . .  A. - ",~,v -- ~A" - • A. • ",v,~ = I(xA B" Rpuv +" " " 

+.rA i~. ~ ) , I ,  ,B " . .  ~ . . . 

(6.10d) 
hPJ~(hpi~,v ,a  - h e i ~ , e , v )  = R P q v a  (6.I 0e) 

hpi~z,v = h p i v , ,  (6.1 Of) 

h p i .  (0) = 5i .  (6.10g) 

hpiv ,~(O)  = 0 (6.10h) 

hpiv  h pJV = "oiJ (6.100 

Here N is any surface bounded by the closed path P'  - P. 
We see equations (6.10) obviate entirely the need for the local affinity 

A q , .  Observe also that (6.10a), (6.10b), and (6.10c) lead to a unique depend- 
ence of 't, on the gravitational field only as a result of the consistency condi- 
tion imposed in Section 5. 

To the list (6.10) we need add propagation equations for 'I~. These are 
provided by the well-known Dirac-Fierz-Pauli wave equations (see, e.g., 
Roman, 1960) of flat space-time, generalized through the prescription that all 
matrices #AB be replaced by h~" dA~. We emphasize that because ko contains 
path dependency, ordinary flat-space derivatives, rather than becoming co- 
variant derivatives, rema in  ordinary derivatives when rewriting the field 
equations for • in curved space-time. [However, according to (6.10d) these 
ordinary differentiations do not commute when space-time is not flat.] 

As an example, a typical DFP wave equation in flat space-time takes the 
form 

o ~  p Oigg ~ + ( im/vr2h)~J E = 0 

Applying the given rule, this generalizes in curved space-time to 

h p # o i l r P  3 # ~  f~ + ( i m / x / 2 h ) ~  = 0 (6.11) 

2 Equation (6.10i) breaks down at those isolated points where Rj~vu:v ~a 0; this cir- 
cumstance will be considered in the next section• 
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Now, according to (5.17) and (6.5) 

hPi#OiE # = h/UoiA h W A co/C b W- lbho iE  # 

= h]#oiA Bo'iE]zwA c(~Cb w - l b  h 

= hig6EA 6~ W A co4Cb W-1.[9~ 

since (Bade & Jehte, 1953) 

Thus, we have 

In addition, we have 

OiA ~ oiE p E i~ = 6 A 6p 

• • = h ie  WecOiC b w - l b  k h~,i# orE F 

,U = W ~ c ¢  c 

a,~ , i ,  p = au(w~ ~ ¢ ~) = wk # ( ~ u  ) 

Substituting these results into (6.11), we obtain 

0 = hjUWEcolc b W-lb izWP~l(~ie lu)  + ( im/vC2h)wEc¢ c 

= h/UWEcoiCb6f~¢[tlu + ( im /~ /2h )wg¢¢  c 

= h juWgco]Cbf fb lu  + (im/,v/2h) w E c ¢  c 

= Wec(hju dcb ¢b Iu + (im/C2~)¢ c) 
= h j u o / c b c o l u  + ( im/ ,c~h)¢ c (6.12) 

Since (6.12) is just the generally covariant DFP equation of motion, we have 
substantiated the assertion that if the path-dependent field ~ obeys (6.11), 
the associated ordinary field ff is a solution of the generally covariant curved 
space DFP equation. 

7. The Dirac Veto 

Equation (6.4) leads to a further restriction on the path-dependent fields, 
as will now be demonstrated. Differentiating (6.4), we obtain 

= + ~ x "  R p ~ v ' ~ I ' , o  ~,u,v,a - ~,v,u,o ~x" Reuv,o (7.1) 

Cyclically permuting laVO in (7.1) produces the two further equations 

~P,o,u,v - ~,u,cr,v = ½"¢" Rt~ou,v~ + ½~" Rpou~,v (7.2) 

~,v,o,v - ~,o,v,u = ½"¢" RPva,u ~ + ½x. R ~ o ~ , u  (7.3) 
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Adding (7.1), (7.2), and (7.3), and grouping terms, we obtain 

(q',u,~,o -q ' , u ,o ,~ )  + (~ ,o ,u ,~  - ~ ,o ,~ ,u)  

+ (~g,v,o,u - ~ , v , u , o )  = ½x'(Rpuv,o + Rpo~,v + R/,vo~t,)~ 
+ ½x. (Rp~q,,~ + RPouq,,~ + Rs,~o,I,,u) 

The terms in parentheses on the left in the preceding may be rewritten using 
(6.4); we find 

½x-(Rp.o~,~ + Rpu.~,o  + Rpou,I,,~) = ½x. (Rp.~,~ + Rp~u,~ 

+ RP,o,u) , I ,  + ½"¢. (Rm,~I,,~ + Reou,I,,~ + Re,o~,~,) 

or  

x" (Rl"uv,~ + RPau,v + R e w , u ) ~  = 0 

Contracting this with the Levi-Civita tensor density e ~uv° (the reason for not 
using the tensor e auv° will become evident), 

e~UV°'r • Rpuv ,o~  = 0 (7.4) 

I f y  is one of those isolated points in space where @UV~Reuv,o 4= 0 as discussed 
in Section 5, (7.4) requires that ~ (y )  = 0. More generally, we conclude that 
must  vanish along the worMline o f  a source o f  the dual Riemann tensor. 

Of course, this sort of restriction occurs in any gauge field theory generalized 
to include "dual" charges. In the particular case of electromagnetism, we fhad 
that the requirement takes the form that the wave functions of electrically 
charged matter must vanish wherever the fields representing magnetically 
charged matter are nonzero. Wentzel (1966) has aptly dubbed this restriction 
the Dirac veto. If we denote by D the set of all space-time points lying on 
worldlines of sources of the dual Riemann tensor, the Dirac veto in gravitation 
may be summarized symbolically as 

q'(D) = 0 (7.5) 

However, the Dirac veto leads to peculiarities in gravitation not exhibited 
in monopole electrodynamics. Since equation (6.7) for the commutation of 
derivatives of  the tetrad is exactly analogous to (5.4) from which flows (7.5), 
it follows by identical logic that heiu must itself be subject to the Dirac veto. 
Specifically, from (6.7) we may obtain an equation similar to (7.4); namely, 

e ~ ° T R p % o . ~ h e i  u = 0 

from which it follows 

hpiv(D) = 0 

Arguing in the same fashion for hp jr ,  we find 

hgV(D) = 0 

(7.6) 

(7.7) 

(7.8) 
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Taken together, (7.7) and (7.8) imply the breakdown on D of definition 
(2.1b). Obviously, our normal notion of space-time must fail at points in D. 
This is not, however, particularly disturbing, for two reasons. 

First, because all matter fields must vanish on D according to the Dirac 
veto, the points in D cannot be directly probed experimentally. Second, 
although (7.7) and (7.8) must certainly hold, we have not required that hpiu 
be cont inuous  on D. Indeed, since the behavior of the divergence of the dual 
R~emann tensor is highly discontinuous at points in D, we have no reason to 
expect or demand that the tetrad be continuous at those same points. Thus, 
the tetrad may behave reasonably in any neighborhood of a dual source world- 
line, and yet vanish on the worldline. 

Since hPaS(D) = O, 

h(D) = det [ hpa~(D) ] = 0 

Because the totally contravariant Levi-Civita tensor is proportional to h, it 
also vanishes on D. On the other hand, the constant numerical array e a#Ta is 
nonzero even on D; this is the reason for employing the tensor density e ~#Ta 
rather than the tensor e a#Ta in formulating conditions (7.4) and (7.6). More- 
over, in view of (7.7) and (7.8), it is now possible to appreciate the tetrad (and 
thus global metric) independence of the quantum conditions, as brought out 
at the end of section 5. Because of this independence, conditions (5.22) are 
meaningful even on D. 

Because non.Abelian gauge fields self-couple, the path-dependent curvature 
tensor itself obeys the appropriate form of (6.4), namely, 

Rpilc~#,l.z,z, - Rp i l c~ , v , #  = - - R P k  i ~ R P k l c ~ #  -- R pk j t s vR P ika~  

From this, by reasoning parallel to that leading to (7.4), we arrive at 

e r U V O R p k i u v , a R p k ] ~  + erUU°Rpklp~,,aRl~'ko~ = 0 (7.9) 

which is evidently satisfied if 

RPiic~(D)  = 0 (7.10) 

The curvature tensor is therefore also subject to the Dirac veto. 
Intuitively, we would expect the field strength to assume arbitrarily large 

values in the vicinity of a point monopole. Condition (7.10) does not con- 
tradict this, since (as with the tetrad) it is impossible to measure the field 
strength at the point occupied by the dual source and there is no reason to 
expect continuity of the field there. 

As a final application of the I~rac veto, we may begin with 

Rpija[3,7,~,~, - Rpi ja f l ,7 ,u ,#  = - -Rpk i#vRPk]a f l ,V  -- Rpkj#vRlh'ka[3,.) , 

and obtain 

eZ#PaRpkilau,aRpk]c~, .y  + er~VaRpk/l.~u,aRPika[3,7 = 0 (7.1 1) 

[This may also be easily seen by differentiating (7.9) and imposing (7.10).] 
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We could satisfy (7.11) by  taking 

Rpijc~5,v(D) = 0 

but this would in turn lead to 

er~vRpi j~ ,7 (D)  = 0 

which would obviously render the whole analysis to this point an empty  
exercise. 

This dilemma is easily resolved: We simply ignore (7.11). We can give 
some justification to this seeming inconsistency. Since erg~aRpqgv,~ is non- 
vanishing only on D, (7.11) is nontrivial only at those isolated points in space 
which serve as sources of  the dual Riemann tensor. At these points, according 
to the developments of section 5, Rpiiu~,~ must have the behavior of  a three- 
space 8 f-mctional. On D, therefore, the left-hand side of  (7.11) corresponds 
to a product of  two 6 functionats; the product of  two such distributions is well 
known to be meaningless mathematically. I f  nothing else, we may conclude that 
it is imprudent to inquire too closely as to the Dirac veto status of  the derivative 
of  the curvature tensor! 

8. The Path-Dependent Gravitational Field Equations 

As yet we have not discussed the field equations which pertain specifically 
to gravitation. Clearly, the ordinary equivalent forms of  the Einstein equation 

*R*~gav = Ggv - Rgv - ½ggvR = -8~rGTgv (8.1a) 

Rgv = -81rG(Tgv - ½ggvT) (8.1b) 

where 

Ruv -R~gav ,  R - R U g ,  T -  TUg 

are unsuitable. This is evident because our goat is to consider the curvature 
tensor as the premier field describing gravity and not,  as is the custom, to as- 
sume that Ri]gv is derivable f rom potentials. Hence, we require an equation 
involving derivatives of the Riemann tensor in order that, given an initial con- 
figuration, the field may be propagated throughout space-time; obviously (8 . t )  
does not meet this criterion. Moreover, (8.1) provides no hint as to the 
generalization of the Bianchi identity to include a source term for the dual 
curvature tensor. Consequently, we must seek new field equations for gravita- 
tion. However, in order to retain the successes of  general relativity, we shall 
continue to accept (8.1) as an algebraic relation satisfied by the Riemann 
tensor. 

Once again, we fall back on the example of our model field, electromagnetism. 
The normal Maxwell equations 

FUV,v = ]u (8.2a) 

F*U~',v = 0 (8.2b) 
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generalize in the presence of a magnetic current ku to 

FUV,v = j~" (8.3a) 

F*UV,v = kU (8.3b) 

In order to find analogous equations for the curvature tensor, we consider the 
identity 

Ru~;r  - Ruv;~  - Roru~;~ = GaX;xgru - Gr~';xg~u + *R*~ruX;~ (8.4) 

which is obtained after a bit of work from the definition of the double dual 
Riemann tensor and the properties of the Levi-Civita tensor. In the broader 
context of non-Abelian gauge fields, this type of identity is peculiar to gravita- 
tion since only in this case is it possible to convert the Yang-Mills indices ij in 
the field tensor to space-time indices/~v. 

The Bianchi identity 
*R*~ruX;x = 0 = GoX;x 

holds in normal Riemann space-times, in which case (8.4) reduces to the two 
equations 

R~ruX;x  = R u e  ;r - Rur ;o  (8.5a) 

*R*oruX;X = 0 (8.5b) 

Since the right-hand side of  (8.5a) may be written in terms of the source tensor 
Tap by virtue of (8.Ib), equations (8.5) bear a strong resemblance to the 
Maxwell equations (8.2) and are often referred to as the quasi-Maxwell  equa- 
t ions o f  gravitation. Indeed, within the framework of normal general relativity, 
Lichnerowicz (1960) has proved that if the Riemann tensor satisfies (8.1) on 
an initial spacelike hypersurface S, then the solutions of (8.5) satisfy the 
Einstein equation (8.t) throughout some neighborhood orS.  Hence, from our 
point of view the equations (8.5) are the perfect candidates for the field 
equations of  gravity in a space-time for which the Bianchi identity is valid. 

At this point our strict analogy with the electromagnetic field breaks down. 
If we postulate a source term Koru  for the double dual Riemann tensor as 
suggested by reference to the generalized Maxwell equations (8.3), the 
generalized quasi-Maxwell equations are forced as a consequence of the identity 
(8.4) (of which there is no counterpart in electrodynamics) to take the un- 
symmetrical form 

RoruX;~. = J u e r  - -  K u o r  (8.6a) 

*R*oruX;x = Ku~r  (8.6b) 
where 

Juor  = R~a;r - R ur;o 

It is apparently not possible in gravitation to maintain the symmetry of the 
field equations in the same sense as the symmetry exhibited in the generalized 
Maxwell equations between the electric and "dual" (magnetic) currents. 

Moreover, equations (8.6) lead to fundamental difficulties with the geo- 
metric interpretation of gravity. If we posit "dual" matter as the source of 
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the dual Riemann tensor in accordance with (8.6b), then by analogy to the 
two-potential approach to the generalized Maxwell equations (Cabibbo & 
Ferrari, 1962), we could introduce two affine connections lP and I7 (and two 
metrics g and g) such that the Riemann tensor is given by 

RC~uv = P~3u,v - P~3v,u + Y~xvl"X~ - V ~ xuI'X~v 

Ordinary matter would move along geodesics given by V and "dual" matter 
along a different set of geodesics described by F. We would therefore have the 
strange situation of two distinct types of matter interacting with two coexist- 
ing, superimposed geometries, both of which are ultimately described by one 
field, the curvature tensor. Further, with two metrics we would have an 
embarrassing plethora of tensors from which to choose the physically signi- 
ficant ones. From every rank-two tensor, two distinct contractions could be 
formed; every contravariant vector would give rise to two covariant vectors. 

Rather than pursue these lines of coNecture, we reject equations (8.6). 
Instead, we attempt to decouple the identity (8.4) to yield equations similar 
to, but more general than, (8.5), and without the introduction of the ad hoc 
quantities appearing in (8.6).Examination of (8.4) shows that this may be 
accomplished uniquely: 

+ 2 x. (8.7a) R orux ;x  = Rit~;r -- Ritr;~ ~(Gr ,xgeu - GoX;xgrit) 

*R*orit  x ;7, = l (GrX;xgeu  - Go x ;xgrit) (8.7b) 

The coefficients ~ and ½ are established by contracting the equations over o 
and/J. Equations (8.7) represent the simplest consistent generalization of 
equations (8.5) and will be taken as the generalized gravitational field 
equations. 

By (8.ia), Guy is proportional to the energy-momentum tensor Titv. As 
a consequence, the right-hand side of (8.7b) is nonvanishing if and only if 
Tit v ;v 4 = 0; that is, the sources o f  the dual R i em a nn  tensor are violations 
o f  local energy -momen tum conservation. We are accustomed to saying that 
the vanishing of the divergence of the dual Riemann tensor leads to energy 
conservation; (8.7b) compels the stronger conclusion that the divergence of 
the dual Riemann tensor is zero i f  and only  if  energy is locally conserved. 
As shown in the next section, (8.7b) possesses the additional desirable property 
of satisfying identically the quantization requirement (5.22b). 

The vanishing of  the general covariant derivative of the tetrad according 
to (2.5) implies that conversion of global to local indices commutes with 
general covariant differentiation; (8.7) may thus be written as 

Ri j i t~;X = R i t i ; j -  R # j ; i  + 2 ( G j ~ ; x h i #  - G i X ; ~ h j  It) 

1 .X. .It _ *R*i]itx;~ = ~(Gj ,~,h~ GiX;xh] It) 
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Converting to path-dependent quantities and global covariant derivatives, and 
in addition inserting the source terms by (8.1), we arrive at the path-dependent 
field equations 

RPij#X:X = -87rG[(TPUi: j  - Tp#j : i )  - l ( h p i U T p , j  - hplUTp,i)  

+ ~ (Tp jX:xhp i  u - TPiX:~,hpjU)] (8.8a) 

*R ~ij~2~ : ~ = - ( 8 7 r G / 3 ) ( T p j X : x h p i  # -- TP i?" : x hp j  #)  (8.8b)  

(Note that while we use the notation Tp for the energy density scalar, actually 
Tp = T since scalars are by definition Lorentz invariant and thus path 
independent.) 

Evaluated at points not in D (i.e., at most points in three-space), relations 
(8.8) reduce to the path-dependent quasi-Maxwell equations 

RpijUX:X = -87rG[(TP#i :  j - TpUj:i) - ½(hpiUTPd - hp f#Tp, i ) ]  

*R]~qux :x = 0 

However, since both sides of (8.8a) and (8.8b) contain an essential dependence 
on the tetrad or its determinant, for points in D equations (8.8) collapse to the 
trivial identity 0 = 0. Consequently, the differential equations (8.8) are not 
very useful on D as generalized quasi-Maxwell equations. 

We can, however, integrate equations (8.8) over a three-volume V: 

fRp i j "?~:~dVu=--8rcG{ f (TpUi : j  - Tp~Zj:i)dV~ 
v 

+ - ?  (re , j  dv~ - re,~ dD)  3 
v 

f * R ~ i j # X : x d V i z = - 8 7 r G f  V 3 .... (Tej~:~ dVi -- TPi;~:~ dV/) (8.9b) 

V 

Equations (8.9) are valid even if V contains one or more dual source points; 
we take them as the final form of the generalized path-dependent gravitational 
field equations. Inasmuch as V may he a very small volume, (8.9) are basically 
equivalent to (8.8), but are free of the attendant difficulties caused by the 
Dirac veto. This situation is not unprecedented. A familiar example is the 
electric field equation for a point charge q 

V- E -- 4~q6(x) 

which is little more than a shorthand for 

f V" E d V  = 4rrq 
v 
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One further point warrants mention. If we take the divergence of the 
generalized Maxwell equations (8.3), we obtain the two charge conservation 
equations 

j~,~ = kU, u = 0 

SimiLarly, by taking the divergence of either of the generalized quasi-Maxwell 
equations (8.7a) or (8.7b) and performing straightforward manipulations we 
arrive at the single "conservation" equation 

G~X;~,;/~ - G~X;x;~ = 0 

or, by (8.1a), 

Tc~X;7,;~ - T/~x;x;~ = 0 (8.10) 

As with the generalized quasi-Maxwell equations (8.9), to ensure the non- 
triviality of (8.10) we must write this equation in integral form: 

f (Tei;~:x,/-- TpjX:X,i) = 0 dVu (8.t 1) 
V 

Requirement (8.11) represents a restriction on the allowed energy-momentum 
tensor divergence; in equivalent terms, we may say that the four-vector of 
force density associated with energy nonconservation must be curl-free. 

9. Interpretation of  the Quantum Condition 

The divergence of the energy-momentum tensor is the force density Gpi, 
defined by 

Gpi = Tpi~:x = OPPi/O~ (9.1) 

where Pm is the energy-momentum four-vector and dg2 is the infinitesimal 
four-volume scalar given by 

d ~  = ei]kl dw i dx j dy k dz l (9 .2)  

The four vectors dw, dx, dy, and dz must be linearly independent in order that 
dr2 v~ 0. Note that since the three-volume vector d Vi is given by 

dVi = eijM dx] dy k dz I (9.3) 

(9.2) is equivalent to 

dr2 = dw i dVi (9.4) 

where  dw i must not be contained in the three-space spanned by dx, dy, and 
dz. 

Now 

f GPi dV] = : ~pPi~g2 dV] = f 3w k o p ~  
V V V 
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by (9.1) and (9.4). Thus, 

f d ( aPpi ] OPPi f Gl,i dV] = ~ \ ~  6]~ - (9.5) 
v ] ~wJ 

where dw] must have a component in the direction of dV i. 
When performing three-space integrations it is most convenient to integrate 

over the hypersurface x ° = const. Then, we may choose the three vectors dx, 
dy, and dz to lie along the x I , x 2, and x 3 axes, respectively; in this case the 
only nonvanishing component of dVi is 

dV o = e0123 dx 1 dx 2 dx 3 = -dx  1 dx 2 dx 3 -~ -dr  (9.6) 

( s ince  e0123 ~- - -1 ) .  Since dVi is therefore timelike, and because dw] must have 
a component parallel to dV t, we may choose 

dwJ = dt (9.7) 

[Observe that for this choice of the hypersurface dV, (9.1) becomes 

c p i -  a a  - = - \ - g - / l  

which justifies the designation force density for Gp/.] 
In view of (9.7), (9.5) becomes 

f tOpt~/Ot, ] = 0  (9.8) 
v GNdVi= (0, ]= 1 ,2 ,3  

Thus, Gpi integrated over a spacelike three-volume V corresponds to the time 
rate of change of four-momentum in V due to energy nonconservation. 

Rewriting the gravitational field equation (8.9b) using (9.1), we obtain 

f -87rG f v *R~ilux:x dV~ = 3 (Gpj dVi - Gpi dV/) (9.9) 
v 

by the properties of tensor duality 

f **R~abU~;X dV u -=- ½eabq f *R~i]ux:x dV, : - f R~abUX:X dV, 
v v v (9.10) 

Combining (9.9) with (9.10), we obtain 

_ f R~at ~ _ -87rG q-8zrG i]., -6--eab ---d--ea~ [(Ge/ dVi - G~ dVi) 
v V 

or 

-8~G ij ( G~ f R~abUX: ~, dVu = --3--  eab dVj 
J 

V v 

(9.11) 
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By (9.9) and (9.11), we have 

f , D *  aT.  "" ~'Pij .r dV~ f R~Im~:~ dV~ 
v V 

= - -  (Gpj dVi - Gp~ dVj) dim Gek dV t 
v 

= - 2  3 eJ ,fc dV, fa.,dV  
V V 

Inserting (9.8), we have 

f*R~ij°r:z dVa f R~i]a[3:~ dV~ = - 2  e iOkO f Gt~ dV 0 f Gpk dV 0 
v v V v 

=0 

since e iOkO = 0. Consequently, the fieM equations (8.9) satisfy identically the 
homogeneous quantum condition (5.22b). 

Putting (9.11) into the first quantum condition (5.22a) furnishes 

= _ _  e.,dJfG~edVjem"k*fGp~dVl 
v v 

= - -  emn q e mnkt f GI~dVj f Gpk dVl 
V V 

Expanding the product of the I_evi-Civita tensors 

9n2/2G 2 = -2(r~ik~ ' -  rTarj k) f GP id~  f GPk d ~  
V g 

o r  

- 9 n 2 -  f GpkdV l f GpkclVl - f GJdV k f GPkdVl 
4G2 v v v V 

Using (9.8), this assumes the form 

- 9 n  2 
4G 2 =  f Gp kdV ° f G,k dV o - f G '°  dV°  f GP° dV° 

V V V V 

= (Dppk/ot)(Oppk/Ot) -- (OppO/ot)(Oppo/Ot) 

= (OppO/3t)2 -- (Opp/Ot)" (0pp/3t) -- (OppO/ot)2 
o r  

(Opp/0t) " (Opp/Ot) = 9n2 /4G 2 

Restoring normal units, we obtain the final, most easily interpreted form of 
the quantization condition on the sources of the gravitational field: 
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A t  those isolated points in space where local energy conservation is 
violated, the production o f  energy is not arbitrary; rather, the time 
rate o f  appearance o f  three-momentum is governed by 

t[ Opp/Ot II = 3c4n/2G (9.12) 

where n = O, +-1, + 2 , . . . .  

10. Comments and Conclusion 

Our analysis has led to the result that with those points in space that act as 
sources or sinks of  energy, we must associate a quantized force, the fundamental 
quantum of  which is 3c4/2G = 1.82 x 1049 dyn. Energetically this amounts 
to nonconservation at the rate of  5.44 x l0  se erg sec -1 . Unfortunately, our 
reasoning is mute regarding the specifics of  energy creation or annihilation. 
Some general conclusions may be inferred, however, 

According to the Dirac veto, TpiX(D) =- 0 in spite of the fact that 
TPiX:x(D) ~ O. This must mean that regardless of  the form in which energy 
is created, the energy cannot accumulate at the source point; rather, it must 
be ejected into the surrounding space as fast as it appears. In order words, 
energy cannot appear in the form o f  a simple stationary rest mass located at 
the dual source point. 

In addition, experience based on normal general relativity would suggest 
that if a given volume of space has a time-dependent energy content, the 
metric surrounding that volume should also be time dependent. This leads us 
to expect that outgoing gravitational radiation would accompany energy non- 
conservation events. In turn, this raises the question of  the distribution of  the 
newly created energy between gravitational waves and the nongravitational 
modes of  energy existence. The resolution of  this question must await the 
discovery of  a specific solution of the field equations (8.9) corresponding to a 
case of  energy nonconservation. 

The physical conditions that might trigger energy production are also un- 
known. The fact that the quantum condition (9.12) involves a three-force 
does suggest, though, that a prerequisite for energy creation or destruction 
might be situations giving rise to tbrce fields of the order of c4/G. A possible 
example is stellar collapse through the Schwarzschild radius, where tidal forces 
assume infinite values in a finite proper time. Violation of energy conservation 
might therefore be expected to play a significant role in black hole formation. 

For n = t ,  (9.12) gives a rate of  energy production of  roughly 105 solar 
masses per second. It becomes abundantly clear why energy conservation has 
always been verified, at least locally: an energy creation event near the Earth 
that proceeded for more than the tiniest fraction of  a second would yield a 
mass so huge as to totally disrupt the solar system as we know it. 

The situation in the depths of  space is perhaps more promising. It is 
interesting that in most realistic cosmologies, e3/G is of  the order of the total 
mass of the universe divided by its age; we have here the possibility of  
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resurrecting a steady-state cosmology without recourse to the cosmic field of 
Hoyle (1948, 1949). 

But where specifically in the cosmos might continuous creation occur? The 
quasistellar objects come immediately to mind. Unfortunately, even the brightest 
of the quasars is estimatedto be 13 orders of magnitude less energetic than the 
10 s9 erg sec -1 required by (9.12). If energy nonconservation is the fundamental 
mechanism underlying quasars, then either that mechanism is switched on only 
an extremely small fraction of the time, or else by far the bulk of the energy 
is produced in hard to detect, nonelectromagnetic forms. 

All in all, it would seem premature to seriously advance the results of this 
article as a plausible explanation for any specific astrophysical phenomenon. 
We do suggest that any experimental evidence adduced in support of energy 
nonconservation will most probably be the result of astronomical events 
occurring, we hope and trust, at astronomical distances. 

A final caveat is in order. At this stage of our understanding of dual charge, 
we have no more or less reason to believe in the reality of gravitational dual 
sources than we do in the existence of magnetic monopoles, and on that 
subject, with the sole exception of the observed quantization of electric charge, 
all empirical evidence is negative. 

Appendix: Proof of  Equation (5.6) 

Using the definitions (5.3) and (5.4) of l~, the relation (5.6) may be rewritten 

M e x p ( - ¢ ' 0 ) = l + o M [  p ] \0 -~  v pbSUV] 
z 

+ 0 ............ O x ~  "~dSU ~ (A1) 

Noting the identity 

aotas "v = (p/p) aptasu ~ + p a(otp)laxu ~ (h2) 

(A1) becomes 

Mexp( -~ -O)=  1 + [ M  coshp P 

+ - Ox • "¢dS "u (A3) 
P 

Obviously, the derivative with respect to S "u of the right-hand side of (A3) is 

[[ s inhp ' [  ~(~/p) '  i s i n h p [  ~ o , ]  
M [~coshp -~ 7 ~ p ~ J + p  lOx O--~J]',~ (A4) 
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Consider now the derivative of the left-hand side of (A3): 

[M exp ( -  ~. 1~)]/OSUV = (om/osuv) exp( -x -p )  + m O [exp ( - ' r  "O)]/OSUV 

(AS) 
According to (4.19) and (5.4), we have 

aM/aSU" = ¼m,~. Reu~, = M,c. ap/aSU~ 

Also, 

[exp(-,r '0)]  
OSU v ~" P sinh p)/OSgV = ~ cosh p - P 

Op 

OSU~' 
Op O([a/p) ,r. I~ cosh p - -  = sinh p 0 - ~  - sinh p¢. ~SUV P 

Therefore, (A5) becomes 

~ [M exp(-x.l~)]~SUV =M,r.(\~SUV]\aP t(cosh p - ~ sinh p) 

[ ~P ~(O/P) x_'~ cosh p 0S_~U ] (A6) + M sinh p ~ - sinh p,r. OSU~ p ] 

Using (3.8) to expand the product of Pauli matrices appearing in the first term 
on the right-hand side of (A6), we find 

0[Mexp(-'~'t~)]=M'r" ~P coshp 
OSUV ~SUV 

+ M sinh D____PO sinh p,r T 0 cosh p 0 - ~  OSUV - ~SUV p 

Gathering terms, 

~[Mexp(-'c'O)]=M{(,c.~___~P " 'P (3P t coshp 
OSUV OSUV p OSUV] 

+ ~-~ "-p --i'¢" ~ x - p  +OS uv "'3--~jsinhp (A7) 
Observe that 

(ao/as"")" (Pip) = (2p) -1 3 (p .o  )lOS "~ = (2p) -1 a(p2)/asu ~ 

= (2p) -1 (2p Dp/OSU~) = Op/DSUV (A8) 
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Inserting (A8) and (A2) into (A7), we obtain 

O[Mexp(-x.p)] ( to(p/p)]. [_ ~p 
aSUV = M [ p [ ~ ] ' r c o s h p +  aS "v 

sinhp P -+  0 x -~ 
=M c o s h p -  P ~SU~' p 

which is identical to (A4), thereby establishing the validity of (5.6). 

155 

(A9) 

R cfcrerl CeS 

Aharonov, Y., and Bohm, D. (1959). Physical Review, 115,485. 
Bade, W. L, and Jehle, H. (t953). Reviews o f  Modern Physics, 25,714. 
Cabibbo, N., and Ferrari, E. (1962). Nuovo Ch'mento, 23, 1147. 
DeWitt, B. S. (1965). Dynamical Theory o f  Groups and Fields, pp. t 14-122. 

Gordon and Breach, New York. 
Dirac, P. A. M. (1931). Proceedings o f  the Royal Society, A133, 60. 
Dowker, J. S., and Roche, J. A. (1967). Proceedings o f  the Physical Society, 92, 1. 
Hoyle, F. (1948). Monthly Notices o f  the Royal Astronomieal Society, 108, 372. 
Hoyle, F. (1949). Monthly Notices of  the Royal Astronomical Society, 109, 365. 
Kibble, T. W. B. (1961). Journal o f  Mathematical Physics, 2, 2t 2. 
Klimo, P., and Dowker, J. S. (1973). International Journal o f  Theoretical Physics, 8, 

409. 
Landau, L. D., and Lifshitz, E. M. (1971). The Classical Theory of  FieMs, pp. 19-20. 

Addison-Wesley, Reading, Massachusetts. 
Lichnerowicz, A. (1960). Annates de Math~matiques Pures et Appliqu~es, 50, 1. 
Lubkin, E. (1963). Annals of  Physics, 23, 233. 
Mandelstam, S. (1962a). Annals of  Physics, 19, 1. 
Mandelstam, S. (1962b). Annals o f  Physics, 19, 25. 
Motz, L. (1972). Nuovo Cimento, 12B, 239. 
Mural, N. (1972). Progress o f  Theoretical Physics, 47, 678. 
Riegert, R. J. (t974). Lettere alNuovo Cimento, 11, 99. 
Roman, P. (1960). Theory of Elementary Particles, pp. 141-146. North-Holland, 

Amsterdam. 
Salam, A. (1973). On SL(6, C) Gauge Invariance, pp. 55-82, in Fundamental Interactions 

in Physics. Plenum, New York. 
Schweber, S. (1961). An Introduction to Relativistic Quantum Field Theory, Chap. 2. 

Harper and Row, New York. 
Schwinger, J. (1966). Physical Review, 144, 1087. 
Schwinger, J. (1968). PhysiealReview, 173, 1536. 
Utiyama, R. (1965). Progress o f  Theoretical Physics, 33, 524. 
Wentzel, G. (1966). Progress o f  Theoretical Physics Supplement, 37-38, 163. 


